По вопросам продаж и поддержки обращайтесь:

Астана +7(77172)727-132 Волгоград (844)278-03-48 Воронеж (473)204-51-73 Екатеринбург (343)384-55-89 Казань (843)206-01-48 Краснодар (861)203-40-90 Красноярск (391)204-63-61 Москва (495)268-04-70 Нижний Новгород (831)429-08-12 Новосибирск (383)227-86-73

Ростов-на-Дону (863)308-18-15 Самара (846)206-03-16 Санкт-Петербург (812)309-46-40 Саратов (845)249-38-78 Уфа (347)229-48-12 единый адрес для всех регионов: air@nt-rt.ru www.air.nt-rt.ru

ЭКМ-1005

Манометр электронный (электроконтактный манометр)

- Многофункциональный цифро-графический ЖК-индикатор с подсветкой
- Перенастройка диапазонов 1:4
- Погрешность от ±0,25 %
- Выходной сигнал 4...20 мА (опция)
- 2 уставки и 2 оптореле каналов сигнализации
- Внесены в Госреестр средств измерений под № 40713-09, ТУ 4212-082-13282997-09

Сертификаты и разрешительные документы

- Свидетельство об утверждении типа средств измерений RU.C.30.002.A № 35451
- Сертификат соответствия № РОСС RU.ГБ06.В01259
- Сертификат соответствия № РОСС RU.AE68.P12346
- Ростехнадзор. Разрешение № РРС 00-36575 на применение приборов
- Беларусь. Сертификат об утверждении типа средств измерений № 7461
- Беларусь. Разрешение на право изготовления и применения в Республике Беларусь технических устройств на объектах, поднадзорных Госпромнадзору № 11-1-0194-2012
- Казахстан. Сертификат о признании утверждения типа средств измерений № 6544
- Казахстан. Разрешение на применение технических устройств

Вид исполнения

Таблица 1

Вид исполнения	Код при заказе
Общепромышленное	_
Взрывозащищенное, «искробезопасная электрическая цепь»	Ex
Взрывозащищенное, «взрывонепроницаемая оболочка»	Exd

Краткое описание

- виды и верхние пределы измерения давления:
 - абсолютное (ДА) 25 кПа...6 МПа;
 - избыточное (ДИ) 4 кПа...60 МПа;
 - избыточное давление-разрежение (ДИВ) –30 кПа...2,4 МПа;
 - дифференциальное (ДД) 10 кПа...2,5 МПа;
- многопредельный и перенастраиваемый потребителем;
- конфигурирование со встроенной клавиатуры на лицевой панели;
- быстродействие (время гарантированного включения реле) 60...100 мс;
- линейно-возрастающая зависимость аналогового выходного сигнала от входной измеряемой величины (давления);
- датчики разности могут иметь корнеизвлекающую зависимость;
- индикация значения измеряемой величины, уставок и параметров конфигурации на многофункциональном 4-разрядном цифрографическом ЖК-индикаторе с подсветкой белого цвета;
- индикация осуществляется в следующих единицах (обозначения единиц измерения, выводимых на индикатор ЭКМ, указаны в скобках):
 - Па (Ра), кПа (kРа), МПа (MРа), кгс/см² (kgf/cm²);
 - по отдельному заказу: бар, атм, мм вод.ст;
- 2 уставки и 2 оптореле каналов сигнализации, тип и значение уставок конфигурируются потребителем.

Показатели надежности

- по устойчивости к электромагнитным помехам соответствует группе исполнения и критерию качества функционирования IIIA, IVB по ГОСТ Р 50746-2000;
- степень защиты от воздействия пыли и воды IP65;
- устойчивость к механическим воздействиям группа исполнения М6 по ГОСТ 17516.1-90;
- средняя наработка на отказ 150000 ч;
- средний срок службы 12 лет;
- межповерочный интервал 3 года;
- гарантийный срок эксплуатации 5 лет.

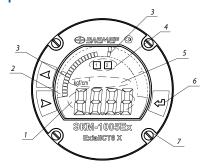

Климатическое исполнение

Таблица 2

Группа	гост	Диапазон температуры окружающего воздуха	Код при заказе
C3*		−5+50 °C	t0550
C3	12997-84	−25+70 °C	t2570
C2**		–40+70 °C	t4070

^{* —} базовое исполнение:

Индикация

- 1. Поле основного индикатора;
- 2. Поле шкального индикатора;
- 3. Изображение значений уставок на шкальном индикаторе;
- 4. Поле индикации включения оптореле;
- 5. Поле индикации единицы измерения;
- 6. Кнопки управления;
- 7. Четыре невыпадающих винта.

Основной индикатор представляет собой 4-разрядный 7-сегментный ЖК-индикатор с высотой символов 14 мм и предназначен для индикации:

- значения измеренной величины;
- названия пункта меню / параметра конфигурации;
- значения параметра конфигурации;
- диагностических сообщений об ошибках.

Шкальный индикатор представляет собой полукруглую линейную шкалу, состоящую из 39 сегментов, и предназначен для индикации и визуальной оценки текущего значения измеряемой величины в установленном диапазоне измерений. Значения уставок изображаются на шкальном индикаторе в виде удлиненных сегментов.

В поле индикации включения реле отображается номер включенного реле.

В поле индикации единиц измерения отображается мнемоническое название установленной единицы измерения.

Метрологические характеристики

Максимальные верхние пределы $P_{\text{вмах}}$, ряд верхних пределов по ГОСТ22520-85 ($P_{\text{в}}$), максимальные (испытательные) давления $P_{\text{исп}}$ и допускаемое рабочее избыточное давление $P_{\text{раб.изб.}}$ (для датчиков ДД) приведены в таблице 3. Для датчиков ДИВ число в верхней строке — верхний предел разрежения, в нижней — верхний предел избыточного давления.

Пределы допускаемой основной приведенной погрешности (Y) указаны в таблице 4

Дополнительная температурная погрешность (Y_T) , вызванная изменением температуры окружающего воздуха от нормальной, приведена в таблице 5

Влияние рабочего избыточного давления (K_p) на датчики дифференциального давления (см. п. 4 «Общей части») приведено в таблице 6

Таблица 3

		Номера, глубина перенастройки (P _в : Р _{вмах}) и ряд верхних пределов (диапазонов) измерений				
Вид давления	Код модели	1 (P _{BMAX})	2	3	4	Р _{исп} / Р _{РАБ.ИЗБ.}
		1:1	1:1,6	1:2,5	1:4	
	AM100	100 кПа	60	40	25	400
ПА	AM250; AK250	250 кПа	160	100	60	1000; 1200*
ДА	AM600; AK600	600 кПа	400	250	160	2500
	AM2,5M; AK2,5M	2,5 МПа	1,6	1,0	0,6	10; 5*

 $^{^{**}}$ — кроме моделей с кодом исполнения по материалам 12V, 13V. Кроме кода класса точности В.

		Номера, глубина перенастройки (Р _в : Р _{вмах}) и ряд верхних пределов (диапазонов) измерений			2 (2	
Вид давления Код модели	Код модели	1 (P _{BMAX})	2	3	4	Р _{исп} / Р _{раб.изб.}
		1:1	1:1,6	1:2,5	1:4	
	им16	16 кПа	10	6,0	4,0	50
	им40	40 кПа	25	16	10	100
	им100; ик100	100 кПа	60	40	25	400
	им250; ик250	250 кПа	160	100	60	500; 1000
714	им600: ик600	600 кПа	400	250	160	2500; 1000**; 120
ди	им1,6м; ик1,6м	1,6 МПА	1,0	0,6	0,4	10; 4**; 5*
	им2,5М; ик2,5М	2,5 МПа	1,6	1,0	0,6	10; 4**; 5*
	им6м; ик6м	6,0 МПа	4,0	2,5	1,6	25; 10**; 12*
	им16М	16 МПа	10	6,0	4,0	40
	им60М	60 МПа	40	25	16	150
	DN 44 F 0	−100 кПа	-100	-50	-30	1000
	BM150	150 кПа	60	50	30	
	DN 4200 DU 200	−100 кПа	-100	-100	-50	4200
	BM300; BK300	300 кПа	150	60	50	1200
див	D14500 D1/500	−100 кПа	-100	-100	-100	2500 1000** 120
	BM500; BK500	500 кПа	300	150	60	2500; 1000**; 120
	2014 514 214 514	−100 кПа	-100	-100	-100	40 4** 5*
	BM1,5M; BK1,5M	500 кПа	300	150	60	10; 4**; 5*
	20.42 414 21/2 414	–0,1 MΠa	-0,1	-0,1	-0,1	40 444 54
	BM2,4M; BK2,4M	2,4 МПа	1,5	0,9	0,5	10; 4**; 5*
	ДМ40	40 кПа	25	16	10	4 МПа
	ДМ100	100 кПа	63	40	25	4 МПа
	ДМ250	250 кПа	160	100	63	4 МПа
	ДМ630	630 кПа	400	250	160	4 МПа
дд	ДМ2,5М	2,5 M∏a	1,6	1,0	0,63	4 МПа
	ДМР10***	10 кПа	6,3	4,0	2,5	25 МПа
	ДМР40***	40 кПа	25	16	10	25 МПа
	ДМР250***	250 кПа	160	100	63	25 МПа
	ДМР2,5М***	2,5 МПа	1,6	1,0	0,63	25 МПа

^{* —} для моделей хКххх;

Знак «–» означает разрежение, нижний предел измерений равен нулю.

Пределы допускаемой основной приведенной погрешности

Таблица 4

Код класса точности	Пределы допускаемой основной приведенной погрешности Y , %, для номеров верхних пределов (диапазонов) измерений			
	1	2	3	4
В	0,25 + *	0,4 + *	0,5 + *	0,6 + *
С	0,4 + *	0,6 + *	0,8 + *	1,0 + *
D	0,6 + *	1,0 + *	1,2 + *	1,5 + *

 $^{^{*}}$ — одна единица последнего разряда, выраженная в процентах от диапазона измерений.

Дополнительная температурная погрешность

Таблица 5

		Дополнительная температурная погрешность $ Y_{_T} $, % на 10 °C, для номеров верхних пределов (диапазонов) измерений			
Диапазон температуры	Код класса точности	1	2	3	4
		1:1	1:1,6	1:2,5	1:4
	В	0,20	0,25	0,30	0,35
−5+50 °C	С	0,25	0,30	0,35	0,40
	D	0,25	0,30	0,35	0,40
	В	0,20	0,25	0,30	0,35
−25+70 °C	С	0,25	0,30	0,35	0,40
	D	0,25	0,30	0,35	0,40
−40+70 °C	В	_	_	_	_
(за исключением	С	0,30	0,40	0,45	0,50
поддиапазона –25+70 °C)	D	0,30	0,40	0,45	0,50

^{** —} для моделей с кодом исполнения по материалам 61N.

^{***} — по согласованию.

Влияние рабочего избыточного давления (формула 2 «Общая часть» стр. 12)

Таблица 6

Условное обозначение модели	К _р , %/МПа
ДМ2,5М, ДМ630, ДМ250, ДМ100	0,2
ДМ40	0,5
ДМРххх	0,04

Значения максимального одностороннего давления для ЭКМ-1005-ДД

Таблица 6-1

V	Максимальное одностороннее давление, МПа			
Условное обозначение модели	Со стороны «плюсовой» камеры	Со стороны «минусовой» камеры		
дм40	1	0,5		
ДМ100	2	1		
ДМ250	4	2		
дм630	6	4		
ДМ2,5М	12	4		

Выходной сигнал

4...20 мА (опция).

Электрическое питание

- защита от обратной полярности питающего напряжения;
- питание ЭКМ осуществляется от источников постоянного тока напряжением 15...36 В при номинальном значении (24±0,48) В или (36±0,72) В;
- питание ЭКМ-1005Ex с видом взрывозащиты «искробезопасная электрическая цепь» осуществляется от искробезопасных источников постоянного тока напряжением 24 В;
- потребляемая мощность не превышает 0,7 Вт для напряжения питания 24 В и 1 Вт для напряжения питания 36 В;

Исполнительные устройства сигнализации

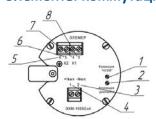

- оптореле каналов сигнализации обеспечивают коммутацию тока до 0,3 А:
 - ~220 B, =220 B (включая 24; 27; 36; 110) для ЭКМ-1005, ЭКМ-1005Exd;
 - =24 B для ЭКМ-1005Ex;
- устройства сигнализации по подключению внешних цепей имеют варианты исполнения по ГОСТ 2405-88, приведенные в таблице 7.

Таблица 7

Код при заказе	Подключение внешних цепей по ГОСТ 2405-88	Вид исполнения по ГОСТ 2405-88
III	Два размыкающих контакта (два нормально-замкнутых контакта)	III
IV	Два замыкающих контакта (два нормально-разомкнутых контакта)	IV
V*	Один контакт размыкающий, другой замыкающий (первый контакт нормально-замкнутый, второй контакт нормально-разомкнутый)	V
VI	Один контакт замыкающий, другой размыкающий (первый контакт нормальноразомкнутый, второй контакт нормально-замкнутый)	VI

^{* —} базовое исполнение

Элементы коммутации и контроля

- 1. потенциометр «0» подстройки «нуля»;
- 2. потенциометр подстройки диапазона;
- 3. клеммы подключения токовых цепей (только для Exd-исполнения);
- 4. клеммы подключения токовых цепей (только для Exd-исполнения);
- 5. клемма заземления;
- 6. клемма подключения второго канала сигнализации;
- 7. общий контакт первого и второго канала сигнализации;
- 8. клемма подключения первого канала сигнализации.

Для доступа к плате коммутации необходимо отвинтить переднюю крышку и вынуть модуль индикации. При использовании кабельных вводов подключение к датчику производится непосредственно на клеммы.

Конфигурирование

Осуществляется со встроенной клавиатуры на лицевой панели.

Основные параметры и процедуры:

- количество знаков после запятой;
- нижний и верхний пределы показаний индикатора;
- единицы измерений;
- количество усреднений;
- вид зависимости выходного сигнала от входного;
- подстройка «нуля» и диапазона;
- параметры уставок и реле.

Исполнение по материалам

Таблица 8. Код исполнения по материалам

V	Исполнение по материалам			
Код исполнения	мембраны	штуцера	уплотнительных колец (х)	
12x	Нерж. сталь 316L	12X18H10T	x=V, P, N	
13x	Al ₂ O ₃	12X18H10T	x=V, P	
61N	Титановый сплав	12X18H10T	x=N	

Таблица 9. Уплотнительные кольца

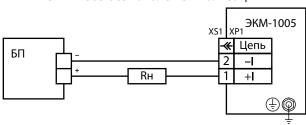
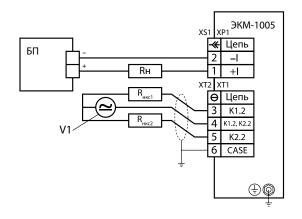
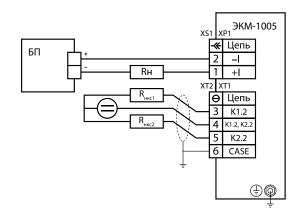

Материал	Применение	Обозначения в коде исполнения
Витон	Нефтепродукты, кислоты	V
Фторопласт	Все среды	Р
Нет	Все среды	N

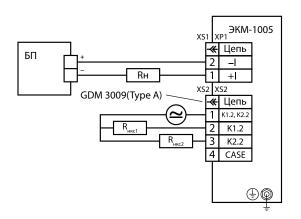
Таблица 10. Исполнение по материалам для разных моделей

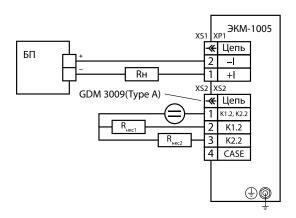
Модели	Код исполнения	Базовое исполнение
ИМххх, ВМххх	12x, 16x, 61N	12V
АМххх, ИМ16, ИМ40, ИМ100	12x	12V
AKxxx, ИKxxx, BKxxx	13x, 14P	13V
ДМххх	12V	12V
ДМхххР	12V, 12P	12P

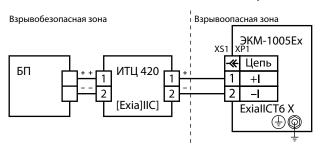

Схемы электрических соединений


ЭКМ-1005 без каналов сигнализации

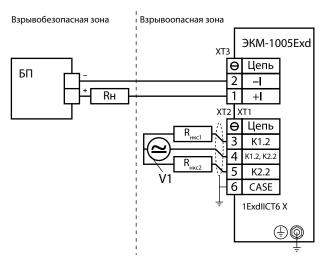
ЭКМ-1005 с каналами сигнализации с кабельным вводом

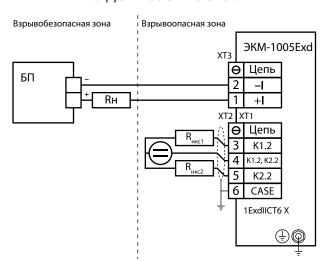

ЭКМ-1005 с каналами сигнализации на оптореле и кабельным вводом в режиме увеличенной токовой нагрузки постоянного тока



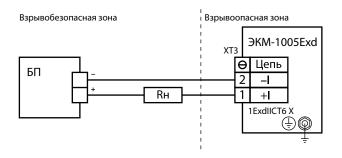

ЭКМ-1005 с каналами сигнализации и вилкой GSP 3 M20

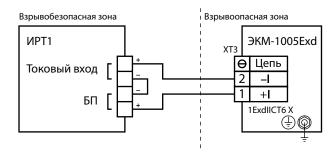
ЭКМ-1005 с каналами сигнализации на оптореле и вилкой GSP 3 M20 в режиме увеличенной токовой нагрузки постоянного тока





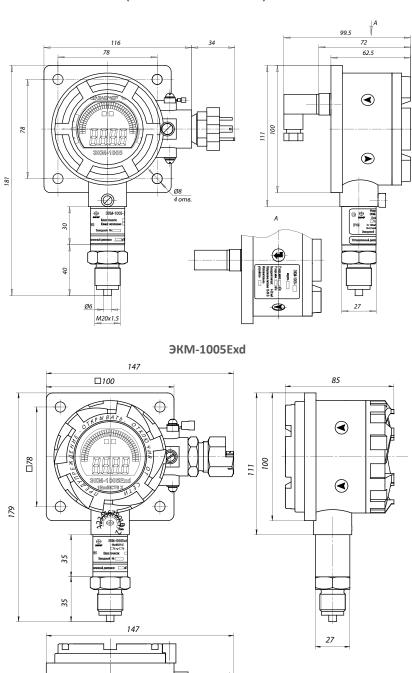
ЭКМ-1005Ех без каналов сигнализации


ЭКМ-1005Exd с каналами сигнализации и кабельным вводом ЭКМ-1005Exd с каналами сигнализации на оптореле и кабельным вводом в режиме увеличенной токовой нагрузки постоянного тока



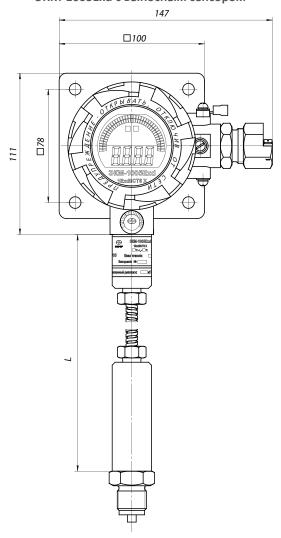
ЭКМ-1005Exd без каналов сигнализации

ЭКМ-1005Exd без каналов сигнализации к различным приборам



Перечень обозначений к схемам электрических подключений

перечень обозначении к схемам электрических подключении						
Обозначение	Расшифровка					
XS1	розетка GDSN 307 (Тип C)					
XP1	вилка GSSNA 300 (Тип C)					
XP2	вилка GSP 3 M20 (Тип A)					
XS2	розетка GDM 3009 (Тип А)					
XT1, XT2	клеммы подключения первого и второго каналов сигнализации					
БП	источник питания постоянного тока напряжением от 15 до 42 В и током нагрузки не менее 30 мА, например: БП 906, БП 2036А, БПИ 24-1/1, выпускаемые НПП «Элемер»					
R _H	полное сопротивление нагрузки в токовой цепи					
V1 ⊜	источник напряжения переменного или постоянного тока (для питания каналов сигнализации)					
	источник напряжения постоянного тока (для питания каналов сигнализации)					
R _{HKC}	общее обозначение нагрузки в цепи канала сигнализации.					


Габаритные размеры

ЭКМ-1005 (в базовом исполнении) и ЭКМ-1005Ех

ЭКМ-1005ДД 116 34 078 08 4 ome. 36 112

ЭКМ-1005Exd с выносным сенсором

Присоединение к процессу

Таблица 11. Код присоединения к процессу (резьбы штуцера, место А) кроме ЭКМ-2005-ДД

Код при заказе	Общий вид и габариты	Модель
M20		
G2	06 M20x1,5 G1/2 Kog M20 Kog G2	АМххх, ИМххх, ВМххх, АКххх, ИКххх, ВКххх
OM20	M20x1,5	АМххх, ИМххх, ВМххх
M24	M24x1,5	АКххх, ИКххх, ВКххх
XX	Присоединительные размеры штуцера по эскизам заказчика	

Варианты электрических подключений (более подробно на стр. 116)

Таблица 12. Код вариантов электрического присоединения и степень защиты от попадания внутрь пыли и влаги

Код при заказе	Варианты электриче	Степень	Вариант	Исполнение корпусов		
	Цепь питания	Цепи сигнализации	защиты от пыли и влаги	исполнения	1 секционный	2 секционный
PGK	Вилка GSSNA 300	Кабельный ввод VG M20-K68 (M20x1,5) (пластик) Диаметр кабеля 6-12 мм			+	
PGM	Вилка GSSNA 300	Кабельный ввод VG M20-MS 68 (M20x1,5) (металл) Диаметр кабеля 6-12 мм		ЭКМ-1005	+	
GSP*	Вилка GSSNA 300	Вилка GSP 3 M20		ЭКМ-1005Ех	+	
KBM-15 KBM-16	Кабельный ввод под металлорукав М (D _{внеш} = 20,6 мм; D _{внуто} = 13,9 мм)			+		
КВП-15	Кабельный ввод под пластиковый рук			+		
КВП-16	Кабельный ввод под пластиковый рук	кав			+	
K-13	Кабельный ввод для небронированного) н бронированного (экранированного) н Ø1013	IP65			+	
КБ-13	Кабельный ввод для бронированного броней (экраном) Ø1013 (D = 13,5)				+	
КБ-17	Кабельный ввод для бронированного броней (экраном) Ø1017 (D = 17,5)		ЭКМ-1005Exd		+	
KT-1/2	Кабельный ввод для небронированно G 1/2»	ого кабеля Ø613, с трубной резьбой				+
KT-3/4	Кабельный ввод для небронированно G 3/4»	ого кабеля Ø613, с трубной резьбой				+
КВМ-15Вн КВМ-16Вн	Кабельный ввод под металлорукав М (D _{внеш} = 20,6 мм; D _{внутр} = 13,9 мм)	ГП15 в ПВХ оболочке 15 мм				+

^{*} — базовое исполнение.

Комплекты монтажных частей и кронштейны (более подробно на стр. 118)

Таблица 13

· · · · I· · ·	
Код при заказе	Состав КМЧ
T1Φ T1M	Прокладка.
Т2Ф Т2М	Переходник с M20×1,5 на наружную резьбу M12×1,5. Прокладка.
Т3Ф Т3М	Переходник с M20×1,5 на внутреннюю резьбу K1/4"(1/4"NPT). Прокладка.
Т4Ф Т4М	Переходник с M20×1,5 на внутреннюю резьбу K1/2"(1/2"NPT).Прокладка.
Т5Ф Т5М	Переходник с M20×1,5 на наружную резьбу K1/4"(1/4"NPT). Прокладка.
T6Ф T6M	Переходник с M20×1,5 на наружную резьбу K1/2"(1/2"NPT). Прокладка.
Т7Ф, Т7ФУ или Т7M, Т7МУ	Гайка M20×1,5. Ниппель. Прокладка.
Т8 Т8У	Бобышка M20×1,5. Уплотнительное кольцо.

Код при заказе	Состав КМЧ
Т9 Т9У	Бобышка M24×1,5. Уплотнительное кольцо.
T11 T11Y	Бобышка G1/2". Уплотнительное кольцо.

Буквы Ф или М в коде Тхх обозначают материал прокладки — фторопласт Ф-4УВ15 (на давление до 16 МПа) или медь М1 (на давление свыше 160 МПа) соответственно.

Буква У в конце кода обозначает материал ниппеля и бобышки — углеродистая сталь. При ее отсутствии материал — 12Х18Н1ОТ.

Таблица 14

Код при заказе	Наименование кронштейна				
KP1	Кронштейн КР1				
КР1ДД	Кронштейн КР1ДД				
KP3	Кронштейн КРЗ				
KP4	Кронштейн КР4				
KP5	Кронштейн КР5				
CBH-MЭ-01	Система вентильная СВН-МЭ с металлическими трубками				
CBH-MЭ-02	Система вентильная СВН-МЭ с гибкими трубками				
CBH-MЭ-03	Кронштейн КР1ДД и система вентильная СВН-МЭ с металлическими трубками в сборе				
CBH-MЭ-04	Кронштейн КР1ДД и система вентильная СВН-МЭ с гибкими трубками в сборе				

Пример заказа

пример заказа													
ı	ди	ик2,5М	2,5 МПа	В		VI	t0550	42	GSP)	ВС/5м		
2	3	4	5	6		7	8	9	10		11		
	13V	Т1Ф	_		БР		_	гг	1		ТУ		
	13	14	15		16		16		17	17 18			19
Exd	ди	им1,6М	1,0 МПа	D		V	t2570	42	K-1	13	BC/5M		
2	3	4	5	6		7	8	9	10	0	11		
	12V	T1M	_		БР		360∏	ГГ	1		ТУ		
	13	14	15		16		17	18	3		19		
	2	— ДИ 2 3 13V 13 Exd ДИ 2 3 12V	— ДИ ИК2,5М 2 3 4 13V Т1Ф 13 14 Exd ДИ ИМ1,6М 2 3 4 12V T1M	— ДИ ИК2,5М 2,5 МПа 2 3 4 5 13V Т1Ф — 13 14 15 Exd ДИ ИМ1,6М 1,0 МПа 2 3 4 5 12V Т1М —	— ДИ ИК2,5М 2,5 МПа В 2 3 4 5 6 13V Т1Ф — — 13 14 15 — Exd ДИ ИМ1,6М 1,0 МПа D 2 3 4 5 6 12V T1M — —	— ДИ ИК2,5М 2,5 МПа В 2 3 4 5 6 13V Т1Ф — БР 13 14 15 16 Exd ДИ ИМ1,6М 1,0 МПа D 2 3 4 5 6 12V T1M — БР	— ДИ ИК2,5М 2,5 МПа В VI 2 3 4 5 6 7 13V Т1Ф — БР 6 7 13 14 15 16 16 Exd ДИ ИМ1,6М 1,0 МПа D V 2 3 4 5 6 7 12V T1M — БР	— ДИ ИК2,5М 2,5 МПа B VI t0550 2 3 4 5 6 7 8 13V T1Ф — БР — 13 14 15 16 17 Exd ДИ ИМ1,6М 1,0 МПа D V t2570 2 3 4 5 6 7 8 12V T1M — БР 360П	— ДИ ИК2,5М 2,5 МПа B VI t0550 42 2 3 4 5 6 7 8 9 13V T1Ф — БР — ГГ 13 14 15 16 17 18 Exd ДИ ИМ1,6М 1,0 МПа D V t2570 42 2 3 4 5 6 7 8 9 12V T1M — БР 360П ГГ	— ДИ ИК2,5М 2,5 МПа В VI t0550 42 GSF 2 3 4 5 6 7 8 9 10 13V T1Ф — БР — ГП 13 14 15 16 17 18 Exd ДИ ИМ1,6М 1,0 МПа D V t2570 42 K-2 2 3 4 5 6 7 8 9 10 12V T1M — БР 360П ГП	— ДИ ИК2,5М 2,5 МПа B VI t0550 42 GSP 2 3 4 5 6 7 8 9 10 13V T1Ф — БР — ГП 13 14 15 16 17 18 Exd ДИ ИМ1,6М 1,0 МПа D V t2570 42 K-13 2 3 4 5 6 7 8 9 10 12V T1M — БР 360П ГП		

- 1. Тип манометра
- 2. Вид исполнения (таблица 1). Базовое исполнение общепромышленное
- 3. Вид измеряемого давления: абсолютное ДА; избыточное ДИ; избыточное давление-разрежение ДИВ; разность давлений ДД
- 4. Условное обозначение модели (таблицы 3)
- 5. Верхний предел (диапазон) измерения (таблицы 3) и единицы измерений: Па (Pa), кПа (kPa), МПа (MPa), кгс/см 2 (kgf/cm 2), мм вод.ст (по отдельному заказу: бар, атм, кгс/м 2).
- 6. Код класса точности: В, С, D (таблицы 4). Базовое исполнение D
- 7. Код исполнения сигнализирующего устройства (таблица 7). Базовое исполнение V
- 8. Код климатического исполнения (таблица 2). Базовое исполнение код t0550
- 9. Наличие токового выхода: отсутствует «—»; имеется 42. Базовое исполнение код «—»
- 10. Код варианта электрического присоединения (таблица 12). Базовое исполнение код GSP
- 11. Конструктивное исполнение:
 - «BC» с выносным сенсором преобразователя давления с указанием длины кабеля (для всех моделей кроме моделей с кодом ДМХХХ), (для возможности удаленного размещения модуля сенсора и модуля индикации). Базовое исполнение код «—»
- 12. Код присоединения к процессу (таблица 11)

Внимание: для ЭКМ-1005-ДД (штуцерное подключение к процессу) следует указывать только код «M20»

- 13. Код обозначения исполнения по материалам (таблицы 8...10). Базовое исполнение в таблице 10
- 14. Код комплекта монтажных частей (КМЧ) для присоединения к процессу (таблица 13):
 - для ЭКМ-1005-ДА, ДИ, ДИВ. Базовое исполнение код Т1Ф
 - для ЭКМ-1005-ДД. Базовое исполнение код Т1Ф (2 шт.)
- 15. Код монтажного кронштейна (таблица 14):
 - отсутствует «—»
 - кронштейн для крепления на трубу Ø50 мм КР1
 Базовое исполнение код «—»
- 16. Наличие брелока для герконового реле (опция «БР»)
- 17. Дополнительные стендовые испытания в течение 360 ч (индекс заказа «360П»)
- 18. Госповерка (индекс заказа «ГП»)
- 19. Обозначение технических условий ТУ 4212-082-13282997-09

 ЭКМ-1005
 ДИ
 ИМ2,5 М

 1
 2
 5

Пример минимального заполнения формы заказа:

Все незаполненные позиции будут базовыми.

www.air.nt-rt.ru